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The onset of coupled Darcy–Benard–Marangoni convection in a liquid saturated porous layer of high per-
meability of practical importance is investigated by employing the Brinkman–Forchheimer– Lapwood-
extended Darcy flow model with fluid viscosity different from effective viscosity. The lower boundary
is taken to be rigid and insulating to temperature perturbations, while the upper surface is open to atmo-
sphere and subject to a general thermal condition. The critical eigenvalues are obtained numerically, in
general, using Galerkin method. However, closed form solution is also obtained using regular perturba-
tion technique for insulated boundaries. Besides, the eigenvalue problem is solved exactly for pure
Darcy–Marangoni convection. The numerical and analytical results are found to be in excellent agree-
ment with each other. It is observed that the effect of buoyancy is destabilizing, while an increase in
the permeability parameter is to delay the onset of convection. The Biot number and the ratio of effective
viscosity to fluid viscosity are found to increase the critical conditions. Some known results are recovered
as special cases.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The convective instability in a horizontal fluid saturated porous
layer heated from below is referred to as Darcy–Benard (DB) con-
vection in which the instability is due to buoyancy forces. The
DB convection has been studied extensively since the pioneering
works of Horton and Rogers [1] and Lapwood [2] owing to its nat-
ural occurrence and also its importance in many scientific, engi-
neering and technological applications. The copious literature
covering different developments in this field are well documented
in [3–9]. However, apart from the buoyancy forces, convective
instability in a liquid saturated porous layer can also occur due
to temperature dependent surface tension forces at the free surface
contact with air known as Darcy–Marangoni (DM) convection. The
study of DM convection has drawn little attention compared to DB
convection in spite of its importance in materials science process-
ing, solidification of alloys, etc.

Patberg et al. [10] have studied Marangoni effects in packed dis-
tillation columns. It is observed that large differences in refreshing
of the liquid on wetted particles can be produced by Marangoni
effect. White and Perroux [11] have examined experimentally that
bulk liquid convection can be produced in porous media by macro-
scopic gradients in surface tension. In their seminal paper, Hennen-
berg et al. [12] have discussed in detail the Marangoni convection in
ll rights reserved.
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a liquid saturated porous matrix. The Brinkman model of the porous
medium and a representative elementary volume (rev) averaged
surface tension at the upper layer of liquid- saturated porous med-
ium with its upper surface in contact with air is considered in ana-
lyzing the problem. The critical Marangoni number for the onset of
convection for different values of permeability parameter is deter-
mined. On the other hand, the effect of Brinkman boundary layer on
the onset of convection in a porous layer driven by surface tension
gradients at both the bounding free adiabatic surfaces has been
studied by Rudraiah and Prasad [13]. In a comment on the paper
by Hennenberg et al. [12], Nield [14] has suggested a composite
fluid and porous layer model for the study of Marangoni convection
in a porous layer. But Nield himself is doubtful about the suitability
of the model (i.e., single porous layer or composite fluid layer over-
lying a porous layer) since experimental studies are lacking in this
direction to dwell upon the situation on hand. Desaive et al. [15]
have studied coupled capillary and gravity driven instability in a
fluid layer overlying a porous layer using Brinkman’s model to de-
scribe the flow in the porous medium. They have determined the
critical Rayleigh and Marangoni number for the onset of convection.
Saghir et al. [16] have developed a detailed numerical analysis to
study the onset of a coupled Benard–Marangoni convection in a
porous fluid combined layer bounded by vertical side walls. While
Saghir et al. [17] have studied the onset of combined Marangoni and
gravity driven convection in a liquid porous cavity of finite size sub-
ject to two different heating conditions: bottom and lateral heating.
Recently, Shivakumara et al. [18] have obtained exact solution for
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Nomenclature

a overall horizontal wave number,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 þm2

p
A ratio of heat capacities, (q0c)e/(q0cp)l

Bi Biot number, (hed/ke)l

c specific heat
Cd dimensionless Forchheimer coefficient
d thickness of the porous layer
D differential operator, d/dz
~g acceleration due to gravity
he effective heat transfer coefficient, /hl þ ð1� /Þhs

K permeability of the porous medium
ke effective thermal conductivity of the porous medium,

/kl + (1 � /)ks

l,m wave numbers in the x and y- directions, respectively

Ma Marangoni number, � @ce
@T

� �
DTd
lje

Me effective Marangoni number, Ma/K
p pressure
Pr Prandtl number, m//je
~q seepage velocity vector, (u,v,w)
R Rayleigh number, agDTd3/mje

Re effective Rayleigh number, R/K
t time
T temperature
x,y,z Cartesian co-ordinates

Greek symbols
a thermal expansion coefficient of fluid density

r2
h horizontal Laplacian operator, @2/@x2+@2/@y2

»2 Laplacian operator, r2
h þ @

2=@z2

/ porosity of the porous medium
ce surface tension
je effective thermal diffusivity, ke/(q0cp)l

K ratio of viscosities, le/l
l dynamic viscosity
le effective viscosity
m kinematic viscosity, l/q0

h perturbed temperature
q density
(q0c)e effective heat capacity of the porous medium,

/(q0cp)l + (1 � /)(q0c)s

(q0cp)l heat capacity of the liquid
(q0c)s heat capacity of the solid
r permeability parameter, d=

ffiffiffiffi
K
p

re effective permeability parameter, r=
ffiffiffiffi
K
p

Subscripts
b basic state
e effective
l liquid
s solid
0 reference

z

x

y 

0T T=

0T T T= − Δ

z = 0 

----------------------------------------------------z = d 

rigid surface 

nondeformable free surface

Fig. 1. Physical configuration.
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the onset of surface-tension driven convection in superposed fluid
and porous layers using the Darcy momentum law to study the fluid
flow in the porous medium.

The existing theoretical studies are concerned only with
Marangoni convection in porous media. Many experimental obser-
vations reveal that buoyancy forces, however small they may be,
play a decisive role on convective processes even under the micro-
gravity conditions. There exist several works on coupled Benard–
Marangoni convection in a clear fluid layer (see Perez-Garcia and
Carneiro [19], Char and Chiang [20], Bragard and Velarde [21], Or
and Kelly [22] and references therein). But to our knowledge, its
counterpart in a porous layer called Darcy–Benard–Marangoni
(DBM) convection has not received any attention so far. For a high
porosity porous medium, Givler and Altobelli [23] have demon-
strated experimentally that the effective viscosity is about 7.5
times the fluid viscosity. Therefore, the aim of the present study
is essentially to investigate the linear stability analysis of a more
generalized problem of coupled DBM convection in a sparsely
packed porous medium by employing the Brinkman–Forchhei-
mer–Lapwood-extended–Darcy flow model with effective viscosity
different from fluid viscosity. In the present work, the ratio of these
two viscosities is taken as a separate parameter to know its influ-
ence on the critical stability parameters. Also, the values of the per-
meability parameter are suitably chosen in the range

ffiffiffiffiffiffiffi
0:1
p

6

r 6
ffiffiffiffiffiffiffiffi
103

p
, where r is the permeability parameter, as suggested

by Walker and Homsy [24]. We consider the lower boundary as ri-
gid and insulating to temperature perturbations, while the upper
free boundary at which the surface tension acts is assumed to be
governed by Newton’s cooling law which very well represents
the general situation. The present investigation also provides
theoretical frame work in conducting experiments on DBM convec-
tion, which are lacking in this direction at present.

The paper is organized as follows. The basic equations and the
boundary conditions are obtained in Section 2 on the lines outlined
in Hennenberg et al. [12]. The eigenvalue problem is solved
numerically, in general, using Galerkin method in Section 3.
Besides, the eigenvalue problem is solved by regular perturbation
technique when both boundaries are insulated to temperature per-
turbations and also exactly for pure DM convection in Sections 4
and 5, respectively. The results are discussed in Section 6, and con-
clusions drawn are presented in Section 7.

2. Mathematical formulation

We consider a Boussinesquian liquid saturated horizontal spar-
sely packed porous layer of thickness d with no lateral boundaries
(see Fig. 1). The lower boundary is assumed to be rigid, while the
upper free surface which is in contact with air and subjected to
temperature-dependent surface tension forces is assumed to be
flat and undeformable. A temperature difference of T is maintained
between the boundaries of the porous layer with the lower bound-
ary at a higher temperature than the upper boundary. A Cartesian
coordinate system (x, y, z) is chosen such that the origin is at the
lower boundary and the z axis is taken vertically upward. The grav-
ity acts in the negative z direction,~g ¼ �gk̂, where k̂ is the unit vec-
tor. The surface tension effects at the upper free surface of the
liquid-saturated porous medium are due to both liquid–gas and
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solid–gas interfaces. Thus one has to consider the effective surface
tension ce from a more complete description of the porous medium
and the wetting liquid. However, in the present study we have
adopted the Hennenberg et al. [12] contrivance in considering
the surface tension effects and assume that ce is of the same order
of magnitude as the liquid–gas one and has the same temperature
dependence of the form (Pearson [25])

ce ¼ ce0 � ceTðT � T0Þ ð1Þ

where ce0 is the reference value and �ceT is the rate of change of
surface tension with temperature.

The fluid density q is assumed to vary linearly with tempera-
ture in the form

q ¼ q0f1� aðT � T0Þg ð2Þ

where a is the thermal expansion coefficient and q0 is the density at
T = T0.

The continuity, momentum and energy equations are, respec-
tively, given by (Nield and Bejan [9])

r �~q ¼ 0 ð3Þ

q0
1
/
@~q
@t
þ 1

/2 ð~q �rÞ~q
� �

¼�rpþq~g�l
K
~qþler2~q�q0Cdffiffiffiffi

K
p j~q j~q ð4Þ

ðq0cÞe
@T
@t
þðq0cpÞlð~q �rÞT ¼ ker2T ð5Þ

where the quantities appearing in the above equations are defined
in the nomenclature.

The basic state is quiescent and is given by

~qb ¼ 0; Tb ¼ �
DT
d

zþ T0; pbðzÞ ¼ p0 � q0gz� aq0g
DT
d

z2

2
ð6Þ

where the subscript b denotes the basic state. The pressure distribu-
tion is of no consequence here as we are going to eliminate the same.
To study the stability of DBM convection, we superimpose infinites-
imal disturbances on the basic state solution and substitute into the
governing Eqs. (3)–(5). Employing the well known standard linear
stability analysis procedure and eliminating the pressure from the
momentum equation by operating curl twice and retaining the
z-component, we arrive at the following dimensionless equations:

1
Pr

@

@t
þ r2 �Kr2

� �
r2w ¼ Rr2

hh ð7Þ

A
@

@t
�r2

� �
h ¼ w ð8Þ

where, w is the z-component of perturbation velocity, h is the per-
turbation temperature and r2

h ¼ @
2=@x2 þ @2=@y2 is the horizontal

Laplacian operator. In the process of non-dimensionalization, we
have employed d, d2/je, je/d and DT as the length, time, velocity
and temperature scales, respectively. The non-dimensional num-
bers appearing in the above equations are: R the Rayleigh number,
the Pr Prandtl number, r the porous parameter, K the ratio of vis-
cosities and A being the ratio of heat capacities.

The boundary conditions at the bottom are for a rigid boundary
insulated to temperature perturbations:

w ¼ @w
@z
¼ @h
@z
; at z ¼ 0: ð9Þ

The complex issue, however, is about imposing the conditions
on the upper free surface at which surface tension effects are con-
sidered. This is based on rev averaged surface tension as detailed in
the work of Hennenberg et al. [12]. The boundary conditions at the
top surface are

w ¼ @h
@z
þ Bih ¼ 0 at z ¼ 1 ð10Þ
where Bi is the Biot number, and the balance between shear stresses
and the surface tension gradients (Pearson [25]) conditions, on
using Eq. (2), give

@u
@z
¼ �Ma

K
@h
@x

at z ¼ 1 ð11aÞ

@v
@z
¼ �Ma

K
@h
@y

at z ¼ 1 ð11bÞ

where Ma is the Marangoni number. Eqs. (11a) and (11b) are differ-
entiated partially with respect to x and y, respectively, and the
results are added to get, after using Eq. (3), the following condition:

@2w
@z2 ¼ Mer2

hh at z ¼ 1 ð12Þ

where Me = Ma/K is the effective Marangoni number. It may be
noted here that the above surface tension condition slightly differs
from that used by Hennenberg et al. [12] This is due to the fact that
we have taken the ratio of viscosities as a separate parameter rather
than expressing it in terms of tortuosity.

We seek solution for w, and h in terms of normal modes of the
form

ðw; hÞ ¼ ½WðzÞ;HðzÞ� expfið‘xþmyÞ þxtg ð13Þ

where l and m are wave numbers in the x and y directions, respec-
tively, and x is the complex growth rate of the disturbances. Substi-
tuting Eq. (13) into Eqs. (7) and (8) and noting from the previous
analyses that the principle of exchange of stability holds (see
Hennenberg et al . [12], Rudraiah and Prasad [13]), we obtain the
following equations relevant to neutral stability:

ðD2 � a2Þ2 � r2
e ðD

2 � a2Þ
h i

W ¼ Rea2H ð14Þ

ðD2 � a2ÞH ¼ �W ð15Þ

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þm2

p
is the overall horizontal wave number, D = d/dz

is the differential operator, re ¼ r=
ffiffiffiffi
K
p

is the effective porous
parameter and Re ¼ R=K is the effective Rayleigh number. The
boundary conditions given by Eqs. (9), (10), and (12) on using Eq.
(13), become

W ¼ DW ¼ DH ¼ 0 at z ¼ 0: ð16Þ
W ¼ D2W þMea2H ¼ DHþ BiH ¼ 0 at z ¼ 1: ð17Þ
3. Numerical solution

Eqs. (14) and (15) together with the boundary conditions given
by Eqs. (16) and (17) constitute an eigenvalue problem with Me or
Re as the eigenvalue. The Galerkin method is employed to solve the
eigenvalue problem as explained in the book by Finlayson [26].
Accordingly, the unknown variables are written in a series of basis
functions as

W ¼
Xn

i¼1

AiWi; H ¼
Xn

i¼1

BiHi ð18Þ

where Ai and Bi are constants and the basis functions Wi and Hi will
be represented by the power series satisfying the boundary condi-
tions. Substituting Eq. (18) into Eqs. (14) and (15) and the Galerkin
procedure of demanding the residues be orthogonal to the basis
functions are applied, we get the following system of homogeneous
algebraic equations.

CjiAi þ DjiBi ¼ 0 ð19aÞ
EjiAi þ FjiBi ¼ 0: ð19bÞ

The coefficients Cji to Fji involve inner products of the basis func-
tions and are given by
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Cji ¼< D2WjD
2Wi þ ð2a2 þ r2

e ÞDWjDWi

þ a2ða2 þ r2
e ÞWjWi > ð20aÞ

Dji ¼ �Rea2 < WjHi > þa2MeDWjð1ÞHið1Þ ð20bÞ
Eji ¼ � < HjWi > ð20cÞ
Fji ¼ BiHjð1ÞHið1Þþ < DHjDHi þ a2HjHi > ð20dÞ

where the inner product is defined as < fg >¼
R 1

0 fgdz.
The system of homogeneous equations given by Eq. (19a) will

have a nontrivial solution if and only if
Cji Dji

Eji Fji

����
���� ¼ 0: ð21Þ

The inner products involved in Eq. (20a) are evaluated analyti-
cally to avoid errors in the numerical integration by choosing mod-
ified Tchebyshev polynomials as trial functions. For a fixed value of
Re, re and Bi, the above characteristic equation gives a relation
between Me and wave number a enabling us to plot a locus in the
Me � a plane. The minimum point of Me as a function of wave num-
ber a gives the critical effective Marangoni number Mec and the cor-
responding critical wave number ac. This procedure is repeated for
different values of Re, re, Bi and the results are discussed in Section 6.

4. Closed form solution by regular perturbation technique

When both boundaries are insulating to temperature perturba-
tions (i.e., DH = 0 at z = 0, 1) the critical wave number is negligibly
small. This assumption, however, is not on physical guess based on
previous results but the numerical calculations which are carried
out in the previous section also corroborate this result. Once we
realize this fact, the eigenvalue problem can now be solved by reg-
ular perturbation technique with wave number a as a perturbation
parameter (Nield [27] and Garcia-Ybarra et al. [28]). Accordingly,
the variables W and H are expanded in powers of a2 as

ðW ;HÞ ¼
Xn

i¼0

a2iðWi;HiÞ: ð22Þ

Substituting Eq. (22) into Eqs. (14) and (15) and also in the
boundary conditions (16) and (17) collecting the terms of zeroth
order, we obtain

D4W0 � r2
e D2W0 ¼ 0 ð23aÞ

D2H0 ¼ �W0 ð23bÞ

with the boundary conditions

W0 ¼ DW0 ¼ 0 ¼ DH0 at z ¼ 0 ð24aÞ
W0 ¼ D2W0 ¼ 0 ¼ DH0 at z ¼ 1: ð24bÞ

The solution to the zeroth order equations is given by

W0 ¼ 0 and H0 ¼ 1: ð25aÞ

The first order equations are then

D4W1 � r2
e W1 ¼ Re; ð25b; cÞ

D2H1 ¼ 1�W1 ð25b;dÞ

with the boundary conditions

W1 ¼ DW1 ¼ 0 ¼ DH1 at z ¼ 0 ð26aÞ
W1 ¼ D2W1 þMe ¼ 0 ¼ DH1 at z ¼ 1: ð26bÞ

The solution of Eq. (25b) subject to the above boundary condi-
tions is given by

W1 ¼ c1 þ c2zþ c3 coshðrezÞ þ c4 sinhðrezÞ � Rez2=2r2
e ð27aÞ

where the arbitrary constants c1–c4 are found to be
c1 ¼
Refðr2

e � 2Þ sinhre þ 2reg
2r4

e ðsinhre � re coshrÞ þ
Meðsinhre � reÞ

r2
e ðsinhre � r coshreÞ

ð27bÞ

c2 ¼ �
Refðr2

e � 2Þ cosh re þ 2g
2r3

e ðsinh re � re cosh reÞ
� Meðcoshre � 1Þ

reðsinhre � re coshreÞ
ð27cÞ

c3 ¼ �c1; c4 ¼ �c2=re: ð27d; eÞ

From Eq. (25b,d), it follows that

1 ¼
Z 1

0
W1dz: ð28Þ

Substituting for W1 from Eq. (27a) in Eq. (28) and carrying out
the integration leads to an expression of the form

1 ¼ Rec
f4reðr2

e � 6Þ sinhre þ ð24� r4
e Þ coshre þ 12ðr2

e � 2Þg
12r5

e ðsinhre � re coshreÞ

þMec
f4re sinhre � ðr4

e þ 4Þ coshre � r2
e þ 4g

2r3
e ðsinh re � re coshreÞ

: ð29Þ

It is interesting to check Eq. (29) for existing results in the liter-
ature under some limiting cases. In the absence of surface tension
forces (i.e., Mec = 0), the above equation reduces to

Rec ¼
12r5

e ðsinhre�re coshreÞ
f4reðr2

e �6Þsinhreþð24�r4
e Þcoshreþ12ðr2

e �2Þg : ð30Þ

The solution given by Eq. (30) is exact and coincides with the
one obtained by Vasseur et al. [29] as a limit of the system fluid
layer over a porous layer and also with Shivakumara and Nanjund-
appa [30]. From Eq. (30) the following results can be deduced.

As re ? 0 (i.e., in the absence of a porous medium)

Rec � 320 1þ r2
e

21

� �
ð31Þ

and the result Rec = 320 is the known exact value for the fluid layer
case [24].

Also, as re ?1 (i. e. Darcy case)

ReDc ¼
Rec

r2
e
� 12þ 36

re
ð32Þ

where, ReD ¼ Re=r2
e is the Darcy-Rayleigh number and the result

ReDc = 12 is the known exact value for the densely packed porous layer
[9]. The term 36/re represents the boundary layer correction. In the
absence of buoyancy forces (i.e., Rec = 0), Eq. (29) simply reduces to

Mec ¼
2r3

e ðsinh re � re coshreÞ
f4re sinhre � ðr4

e þ 4Þ coshre � r2
e þ 4g ð33Þ

and this is the exact solution for Marangoni convection in a porous
layer.

We note that as re ? 0,

Mec � 48 1þ r2
e

20

� �
: ð34Þ

The result Mec = 48 is the known exact value for a clear liquid layer
[21].

As re ?1,

MeDc ¼
Mec

r2
e
� 2þ 6

re
ð35Þ

where MeD ¼ Me=r2
e is the effective Darcy–Marangoni number. The

second term 6/re represents the boundary layer correction.
5. Exact solution for DM convection

If the convective instability in a porous layer is considered to be
solely due to surface tension forces (i.e., Re = 0) then the eigenvalue
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problem for DM convection can be solved exactly. The aim of the
present section is to explore this possibility. The method of solu-
tion also helps in knowing the accuracy of the results obtained
from the previous methods, particularly with those obtained by
regular perturbation technique. Since Re = 0, Eq. (14) can now be
solved directly to get

W ¼ A1½coshðazÞ þ bb sinhðazÞ � coshðbzÞ � ab sinhðbzÞ� ð36aÞ

where,

b2 ¼ a2 þ r2
e ; b ¼ cosh b� cosh a

ðb sinh a� a sinh bÞ ð36b; cÞ

and A1 is a constant.
Substituting for W thus obtained in Eq. (15) and solving, we

obtain

H ¼ A1 d1 coshðazÞ þ d2 sinhðazÞ � 1
2a

z sinhðazÞ
�

� bb
2a

z coshðazÞ þ 1
r2

e
coshðbzÞ þ ab

r2
e

sinhðbzÞ
	

where; ð37aÞ

d1 ¼
1

2a2r2
e ða sinh aþ Bi cosh aÞ sinh afbbr2

e ða2 � BiÞ



þar2
e þ aBiðr2

e þ 2abbgÞ þ cosh afabbðr2
e Biþ 2a2Þ þ a2r2

eg
�2a2 sinh bðbþ abBiÞ � 2a2 cosh bðabbþ BiÞ

�
ð37bÞ

d2 ¼
ðr2

e � 2a2Þbb
2a2r2

e
: ð37cÞ

Utilizing the expressions for W and H given by Eqs. (36a) and
(37a), respectively, in the coupled boundary condition

Mea2Hð1Þ ¼ �D2Wð1Þ ð38Þ

we obtain an exact formula for Me in the form

Me ¼
2r2

e ½b
2 cosh b� a2 cosh aþ abbðb sinh b� a sinh aÞ�

½2a2 cosh bþ 2a3b sinh bþ g1 cosh aþ g2 sinh a�
where; ð39aÞ

g1 ¼ ar2
e ð2ad1 � bbÞ ð39bÞ

g2 ¼ ar2
e ð2ad2 � 1Þ ð39cÞ
numerical (—) and regular perturbation (——) solutions completely coincide for
Bi = 0.
6. Results and discussion

The eigenvalue is taken to be either effective Marangoni num-
ber Me or effective Rayleigh number Re as the case may be. The
critical eigenvalue (Mec or Rec) and the corresponding wave num-
ber (ac) obtained both numerically as well as analytically in some
cases are presented graphically in Figs. 2–5 for different values of
Re or Me, re and Bi. For many porous materials of scientific and
technological importance, the permeability of the porous medium
is very high and accordingly the values of the permeability
parameter r are chosen. In order to have a check on the accuracy
of the numerical method used, first test computations are carried
out for different values of Bi varying between zero and infinity
with, K = 1, Me = 0 and re = 0 (i.e., in the absence of porous med-
ium or classical viscous case). The critical Rayleigh numbers and
wave numbers thus obtained are compared with those of Sparrow
et al. [31] in Table 1. From the Table 1 we note that there is a
very good agreement between both the approaches and thus ver-
ifies the accuracy of the method used. Also, an increase in the
value of Biot number is to increase the critical Rayleigh and wave
numbers and thus its effect is to delay the onset of convection as
well as to reduce the dimension of convection cells. This may be
due to the fact that with an increase in Bi the free surface devi-
ates from good conductor and hence there is an increase in the
critical stability parameters.
The results for DB and DM convection, obtained from the pres-
ent study as particular cases, and also for coupled DBM convection
are separately discussed in the following sub-sections.

6.1. DB convection

In this case, the convective instability is only due to buoyancy
forces and take Me = 0. The numerically calculated critical effective
Rayleigh number Rec and the corresponding wave number ac are
shown in Figs. 2(a) and 2(b), respectively, as a function of re for dif-
ferent values of Bi. Fig. 1(a) indicates that increase in re and Bi is to
delay the onset of convection. It is also seen that deviation in Rec val-
ues goes on decreasing with an increase in the value of Bi (>1).
Although the increase in ac is slow for r2

e 6 50, the critical wave
number remains practically constant with further increase in re

for all values of Bi considered. However, increase in Bi is to increase
ac and thus its effect is to decrease the dimensions of the convective
cell. For Bi = 0 (i.e., when both boundaries are insulating to temper-
ature perturbations), ac is found to be negligibly small suggesting
the unicellular pattern of convection. This fact has been exploited
to find a closed form analytical solution for the onset of convection
by regular perturbation technique. The critical effective Rayleigh
number so obtained is also shown in Fig. 2(a) by dashed lines. We
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note that the critical Rayleigh numbers coincide with each other sug-
gesting the solution obtained for insulated boundaries by regular
perturbation technique is not an approximate one instead it is exact.

6.2. DM convection

We consider here that the convective instability is only due to
surface tension forces and take Re = 0. Fig. 3(a) and (b) show the
variation of Mec and ac with re for different values of Bi. As already
noted in DB convection, the effect of increase in re and Bi is to de-
lay the onset of DM convection as well (see Fig. 3(a)). When Bi = 0,
ac is again found to be vanishingly small and the regular perturba-
tion technique is used to obtain an analytical expression for Mec.
Besides, an exact solution for the eigenvalue problem is also ob-
tained. The values of Mec and ac calculated from the exact formula
(cf. Eq. (39a)) are also indicated in Fig. 3 by dashed lines. We note
that the results obtained from numerical and analytical methods
compare very well with each other. In particular, the solution ob-
tained by regular perturbation technique for Bi = 0 coincides with
the exact solution and thereby reconfirms the solution given by
Eq. (30) is exact. Both Mac and ac values obtained numerically as
well as by exact analysis for different values of Bi with re = 0
(i.e., in the absence of porous medium or classical viscous case)
are tabulated in Table 2. From the Table 2 it is seen that the results
computed numerically are in excellent agreement with those ob-
tained under exact analysis. The effect of increase in the Biot num-
ber is to delay the onset of Marangoni convection and also to
reduce the dimension of convection cells as observed in the previ-
ous case (see Table 1).

A glance at the critical eigenvalues Mec and Rec presented in
Fig. 4(a) as a function of Bi for different values of re reveals that
Mec < Rec up to a certain range of values of Bi; exceeding which
an opposite type of behavior could be seen (see also Tables 1 and
2). Further, it is evident that an increase in the value of re is to
increase the range of Bi up to which Mec < Rec. Also, the variation
in Rec is negligible for the values of Bi considered, but Mec increases
significantly with Bi. The critical wave numbers for DM convection
are always found to be higher than those for DB convection (see
Fig. 4(b)). This may be due to the fact that the effect of surface
tension force is to contract the surface and in turn to shrink the
convective cells.

6.3. DBM convection

The effects of both gravity and surface tension forces are consid-
ered together in the discussion. The effective critical Marangoni
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Table 1
Comparison of critical Rayleigh number Rc and critical wave number ac for different
values of Bi with Me = 0 and re = 0 (i.e., in the absence of a porous medium).

Bi Sparrow et al. [31] Present study

Rc ac Rc ac

0 320.000 0.00 320.000 �2.641�10�9

0.01 338.905 0.58 338.904 0.5831
0.03 353.176 0.76 353.158 0.7624
0.1 381.665 1.015 381.665 1.0151
0.3 428.290 1.03 428.290 1.2992
1 513.792 1.64 513.790 1.6438
3 619.666 1.92 619.666 1.9211
10 725.150 2.11 725.147 2.1055
30 780.240 2.18 780.237 2.1760
100 804.973 2.20 804.972 2.2029
1 816.748 2.21 816.744 2.2147

Table 2
Critical values of Marangoni number Mac and wave number ac for various values of Bi
with R = 0 and re = 0 (i.e., in the absence of a porous medium).

Bi Numerical solution Exact solution

Mac ac Mac ac

0 48.000 3.4246�10�9 48.000 0.000
0.01 50.710 0.6129 50.710 0.6136
0.03 52.988 0.7987 52.988 0.7997
0.1 58.151 1.0603 58.150 1.0603
0.3 68.534 1.3593 68.534 1.3599
1 96.338 1.7474 96.336 1.7474
3 163.905 2.1180 163.902 2.1167
10 383.186 2.4506 383.185 2.4500
30 995.988 2.6286 995.986 2.6300
100 3131.680 2.7129 3131.670 2.7128
1 3.0490 � 1019 2.7544 3.0438 � 1019 2.7545

I.S. Shivakumara et al. / International Journal of Heat and Mass Transfer 52 (2009) 2815–2823 2821
and Rayleigh numbers obtained numerically for different values of
re which are shown in Fig. 5(a) for Bi = 0 and in Fig. 5(b) for Bi = 1
and 2. Even in the present case, it is observed that the critical wave
number is negligibly small when Bi = 0 and the solution given by
Eq. (29) is exact. The results obtained by regular perturbation tech-
nique for different values of re are also presented in Fig. 5(a) and
note that the results agree very well with the numerical ones. In
these figures, the regions above and below Mec versus Rec curves,
correspond, respectively, to stable and unstable ones. It is observed
that there is a strong coupling between Mec and Rec such that an in-
crease in one decreases the other. That is, increase in the buoyancy
force decreases the effect of surface tension force on the onset of
convection and vice-versa. Moreover, increase in re and Bi is to
increase the region of stability. From Fig. 5(a) and (b) it is also evi-
dent that the stability curves are straight lines for Bi = 0 (see
Fig. 5(a)), whereas they are slightly convex for values of Bi = 1
and 2 (see Fig. 5(b)). In particular, from Eq. (29), it is noted that

1 ¼ Rec

320ð1þ r2
e=21Þ þ

Mec

48ð1þ r2
e=20Þ as re ! 0 and ð40aÞ

1 ¼ ReDc

12ð1þ 3=reÞ
þ MeDc

2ð1þ 3=reÞ
as re !1: ð40bÞ

The variation of critical wave number ac as a function of r2
e is shown

in Fig. 4(c) for two values of Re = 0 and 300 with different values of
Bi. From the figure it is seen that increase in re and Bi is to increase
ac. On the contrary, the presence of buoyancy force is to decrease
the critical wave number. The critical Marangoni and wave num-
bers obtained numerically for different values of K, Bi and r2 for
two values of R = 0 and 200 are presented in Table 3. From the table
we note that an increase in the value of K is to increase the critical
Marangoni number and thus making the system more stable. Nev-
ertheless, increase in K is to decrease the critical wave number,
except for Bi = 0, and hence its effect is to increase the dimension
of convection cells. Further, increase in Bi and r is to make the sys-
tem more stable, while an increase in the Rayleigh number R makes
the system unstable.



Table 3
Comparison of critical Marangoni number Mac and critical wave number ac for different values of Bi, K and r2.

R Bi r2 K = 1 K = 3 K = 5

Mac ac Mac ac Mac ac

0 0 10 71.974 0.000 167.997 0.000 263.999 0.000
50 166.431 0.000 263.693 0.000 359.873 0.000

100 281.212 0.000 382.189 0.000 479.172 0.000
1 10 138.862 1.856 332.196 1.787 524.868 1.772

50 297.041 2.122 499.196 1.913 694.310 1.856
100 479.214 2.330 698.949 2.029 899.783 1.940

5 10 318.279 2.467 775.783 2.344 1231.580 2.316
50 635.814 2.998 1126.510 2.575 1591.400 2.476

100 978.212 3.467 1530.520 2.805 2016.590 2.674

200 0 10 41.373 0.000 137.773 0.000 233.861 0.000
50 134.627 0.000 232.789 0.000 329.272 0.000

100 248.842 0.000 350.741 0.000 448.138 0.000
1 10 104.582 1.770 297.688 1.757 490.458 1.754

50 267.177 2.022 466.567 1.879 660.967 1.835
100 453.023 2.231 668.167 1.994 867.677 1.918

5 10 263.368 2.331 719.401 2.230 1174.880 2.289
50 596.162 2.854 1076.690 2.525 1538.870 2.4737

100 949.168 3.339 1487.160 2.755 1968.560 2.595
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7. Conclusions

The onset of coupled DBM convection in a highly permeable
porous medium of scientific and technological importance is inves-
tigated. The lower boundary is assumed to be rigid and insulated to
temperature perturbations whereas the upper boundary is free
with temperature dependent surface tension. Further, the heat
transfer on the free boundary is described by a more general New-
ton’s law of cooling with Biot number varying between zero and
infinity. The eigenvalue problem is solved numerically, in general,
using Galerkin method. For insulated boundaries, the convection
occurs at a vanishingly small wave number and the solution to
the eigenvalue problem obtained by regular perturbation tech-
nique is exact. Besides, an exact analysis is also being carried out
to find Me when the instability is only due to surface tension forces.
It is noted that the critical eigenvalues obtained from a combina-
tion of analytical and numerical techniques complement very clo-
sely with each other. A comparison between the critical stability
parameters of DB and DM convection discussed separately shows
that there exists a critical value of Bi (depending on the value of
permeability parameter re) such that below which Mec < Rec, and
above which Mec > Rec. However, the critical wave numbers for
DM convection are always found to be higher than those for DB
convection. The locus of (Mec, Rec) for different values of re shows
that it is a straight line for Bi = 0, while it is slightly convex for
Bi = 1 and 2. The effect of increase in re, K and Bi is to delay the
onset of convection. Further, increase in re and Bi, and decrease
in K is to decrease the dimensions of the convective cell. Also,
Mec and ac decrease with an increase in the Rayleigh number and
thus the buoyancy force has a destabilizing effect on the system.
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